If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2-3=0
a = 4; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·4·(-3)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*4}=\frac{0-4\sqrt{3}}{8} =-\frac{4\sqrt{3}}{8} =-\frac{\sqrt{3}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*4}=\frac{0+4\sqrt{3}}{8} =\frac{4\sqrt{3}}{8} =\frac{\sqrt{3}}{2} $
| 1/2×+1/4-x=16 | | 2r+18/8=2r-24/2 | | -7(2n-3)=7 | | 13x^2-4x-800=0 | | A+9x6=3x14+x | | 3x−2416−3x−1212=3 | | 45=21x+4.9x^2 | | 9(2d+7)=11(d+14( | | 5(2x-3)=4x-13+6x | | 6x-21=5x+17=x | | 4+2(x+3)=4x | | -2(x-6)=26 | | x*x+100x-291=0 | | 16x^2+42x+20=0 | | y+(-7)=6 | | 16^2+42x+20=0 | | -10x+13=-10x+13 | | 5(n)=10(n+2) | | 3/x=5/9 | | n/6=n+7/10 | | 4x+16x=22+6 | | 1/3x-1/2x=2-5 | | -4w=3w-7 | | X+3.7=1.9x | | 18x-x+5=2x-10 | | 576-96x+2x^2=0 | | 14=z/4 | | 10x+1.9=-28.1 | | x+10.7=19.6 | | 3(x+7)x=2 | | -46=2x | | (x+4)-5(x-2)+3=4x |